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Results of numerical simulation of a supersonic flow around spatial configurations of flying vehicles with the
use of the Euler equations are presented. A model of a complex object was constructed on the basis of sim-
pler base objects. Results of numerical solution of the problem on a three-dimensional flow around objects
with an ogival-cylindrical airframe and a triangular wing with a diamond-shaped profile, arranged in differ-
ent ways, at a Mach number M∞ = 4.03 and an angle of attack α = 10.1o have been analyzed. Calculation
data were compared with the analogous data of a physical experiment.

The main point in the deviation of an algorithm for calculating three-dimensional flows in the neighbor-
hood of different-configuration objects in problems of aerodynamics is the construction of a geometric model of
the object being studied. A model of a complex object can be constructed using base objects [1–3]. In problems
of aerodynamics, such objects are an airframe, wings, and stabilizers. Base objects are represented by blocks of
subprograms, in which the geometry of an object is described by using high-level programming means and the
mathematical apparatus of analytical geometry. A characteristic feature of this method is that the necessary require-
ments for the compactness and openness of program blocks are met when analytical expressions defining the ge-
ometry of an object are selected appropriately. At the initial stage of search for an aerodynamic geometry of an
object, the indicated method allows one to perform extensive parametric numerical investigations of the gas dynam-
ics of a flow in the neighborhood of this object.

In the present work, a supersonic flow around a complex object with a cylindrical airframe with an ogival
head and a triangular wing with a diamond-shaped profile was investigated. A supersonic flow around this object with
different arrangements and geometries of the frame and triangular wing were calculated at M∞ = 4.03 and α = 10.1o

of an incident flow. The results obtained were compared with the analogous results of a physical experiment.
Description of the Geometry of an Airframe. The cross sections of the airframe of the object considered

represent plane hyperellipses [1, 3]. The elliptic and prismatic axisymmetric bodies are described in the longitudinal di-
rection in the cross sections x = const by a hyperbolic function. In the cylindrical coordinate system y = r cos (ϕ), z
= r sin (ϕ), this function, in the implicit form F(x, r, ϕ) = 0, is as follows:

F (x, r, ϕ) = r (cos
n
 ϕ + µn

 sin
n
 ϕ)1

 ⁄ n − µa = 0 . (1)

The exponent n determines the cross-section configuration of the body. In the equation for an ellipse with
semi-axes a and b, n = 2. This expression defines a fairly wide class of conic configurations with different n and
the ratio between the semi-axes µ = b/a. Here, a is a semi-axis in the direction of the z axis — a function of x
in the general case. For example, for a conic head, a = tan θ x, where θ is a half-angle of a cone. The surface of
the airframe is defined, in the general case, with the use of the functional dependences of the semi-axes a = a(x)
and b = b(x).
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Geometry of a Triangular Wing with a Diamond-Shaped Profile. The geometry of a triangular wing with
a pointed leading edge and a plane middle surface is defined by the following relations:

y = % Cw (x − xk) (2)

at x ≤ (xi + xk)/2 and

y = % Cw (xi − x) (3)

at x > (xi + xk)/2.
The coefficient Cw is determined by the thickness of the profile and is equal to Cup for the upper part of the

wing (y > 0) and Clow for its lower part (y < 0). In the particular case of a symmetric profile, Cw = Cup = Clow. This
wing with a symmetric diamond-shaped profile along the local chord has a sweep angle χ = 70.67o and Cw = 0.3 at
z = const.

Construction of a Geometric Model of a Complex Object. A geometric model of a complex object is con-
structed on the basis of simpler base objects. In this model, the line of intersection of components of this object —
an airframe, a wing, and an empennage — is determined. This line represents a solution of the system of equations
for the indicated components of the complex-geometry object considered. In the case where the cross section xk =
const, this system consists of Eqs. (1)–(3). Equations (2) and (3) in the form y = ψ[(xk − xw), (z − zk)] define the pro-
file of the wing. Here, xw is the coordinate of the origin of the board chord of the wing, determining the position of
the wing on the airframe. The system of equations (1)–(3) determines the line of intersection of the airframe with the
wing and is solved by the Newton iteration method [1]. The coordinates of the profile of the root chord of the wing,
determined by the relation yk = ψ[(x − xw), 0], can serve as the initial approximation at a current value of x.

For construction of the geometry of the complex object considered, it is necessary to know the values of x of
the longitudinal coordinates determining the positions of the plane of conjugation of the components of this object and
the cross section x = const at the characteristic points.

Formulation of the Problem. A supersonic three-dimensional flow of a compressible viscous gas around a
complex object at M∞ > 1 is considered. The problem is solved in a region bounded by the surfaces of the object and
a leading shock wave.

The nonstationary motion of a compressible gas in any finite volume inside a disturbed region, where sources
and sinks are absent, is defined by the equation [4, 5]
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The pressure is determined from the equation of state that closes the system and, for an ideal gas, has the form p =
(γ − 1)ρe.

The computational region is divided into nonintersecting volumes. Approximate initial equations are con-
structed for each elementary volume and the gas-dynamic parameters on the faces of cells are determined linearly by
their values at the nodes. The problem on a stationary flow with a definite initial field around the object is solved in
each cross section x = const. In this case, the parameters of the flow in the first marching cross section are calculated
if the flow in the neighborhood of the point nose of the object is conical [5]. In the process of solution, the position
of the leading shock wave is corrected. The boundaries of the computational region are the surface of the leading
shock wave at which the parameters of the flow in the perturbed region are related to the parameters of the incident
flow by the Rankine–Hugoniot relations, the surface of the body on which the nonpercolation conditions are fulfilled,
the condition of symmetry of the flow in the case where an object has a symmetry plane, and the condition of match-
ing of solution in the x0y plane in the case of a slip flow. The nonpercolation condition was provided for the pointed
edge, when the vector of the normal to it was known, by a standard procedure [6, 7].
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The numerical algorithm proposed allows one to solve the problem formulated with separation of a leading
shock wave or by the through method. In the first case, the location of the leading shock wave is determined at each
iteration time step and the problem is solved on an adaptive grid. In the second case, calculation is carried out using
a fixed grid and the parameters of an incident flow are determined at the outer boundary.

Flow around an Isolated Airframe. An isolated airframe represents a combination of axisymmetric bodies. It
consists of a head ogival part with an elongation λh = 4 and a cylinder with an elongation λc = 9.7. Calculation was
performed for an incident flow with M∞ = 4.03 and α = 10.1o with separation of the leading shock wave.

In the process of analysis of the gas-dynamic structure of the flow in the neighborhood of the body studied,
some characteristic regions were considered. As a criterion of separation of these regions, the value of the cosine of
the angle between the velocity vector of the incident flow and the outer normal to the surface of the body at each
of its points, i.e., cos (w∞n)  = w∞n, was used. For the flow regime considered, two characteristic regions can be
separated in the neighborhood of the body around which a stream flows. The first of them is the upstream side of
the body, where π ⁄ 2 < ϕ < π. Here, cos (w∞n) ≤ 0 and the distribution of the pressure coefficients Cp in the cross
sections x = const is a monotonically increasing function with a maximum on the generating line ϕ = π (Fig. 1).
The second region is the downstream side of the body 0 < ϕ < π ⁄ 2. This region, in turn, can be divided into subre-
gions by the value of cos (w∞n) — regions "visible" and "invisible" for the incident flow. The "visible" subregion,
where cos (w∞n) ≤ 0, arises in the flow regime considered in the leading ogival part of the airframe at 0 ≤ x ⁄ Dm <
2.9. Here, in the cross sections of a part of the body, the pressure-coefficient distribution represents a monotonically
increasing function with a maximum on the generating line ϕ = π lying on the upstream side and a minimum on
the downstream side at ϕ = 0 [8]. It is seen from Fig. 1 that the distribution of Cp(ϕ) in cross sections 1∗ and 2∗ is
monotone in character and that the calculation data are in good agreement with the experimental ones [9].

In the case considered, the subregion "invisible" for the incident flow, where cos (w∞n) > 0, includes a part
of the ogival head surface and the downstream surface of the cylinder at x ⁄ Dm > 2.9. This region is responsible for
the formation of a flow with a complex gas dynamics on the downstream side. Here, a negative pressure gradient is
formed, i.e., ∂Cp(ϕ)/∂ϕ < 0; the reason for this gradient is an intensive stream flowing from the upstream side to the
downstream side and a decrease in the transverse component of the velocity vector in the neighborhood of the sym-
metry plane of the body. This feature is shown in Fig. 1 for cross sections 3∗ and 4∗ in the cylindrical part of the
body.  Under actual conditions, this gradient causes a separation of the boundary layer that is not reproduced in the
process of numerical solution of the problem within the framework of the Euler equations. At M > 1, due to the

Fig. 1. Distribution of the pressure coefficient in the cross sections of an air
frame: 1) experiment; 2) calculation.
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pressure gradient, a longitudinal jump arises in the transverse velocity component on the downstream side of the
body [10].

Comparison of the calculated values of Cp(ϕ) in cross sections 3∗ and 4∗ with the experimental data of [9]
have shown that these data differ mainly in the region of boundary-layer separation at 30o < ϕ < 80o (Fig. 1).

Flow around an Isolated Wing with a Diamond-Shaped Profile. The problem on a flow around an isolated
triangular wing with a sweep angle χ = 70.67o was solved for an incident flow with M∞ = 4.03 and α = 10.1o with
separation of the leading shock wave. The results of calculation of an isolated wing are presented in Fig. 2. The dis-
tributions of the pressure coefficients Cp(z

_
) over the wing span in the cross sections x = const are shown in Fig. 2b

Fig. 2. Distribution of the pressure coefficient in the cross sections of a wing:
a) isoMachs in the neighborhood of the wing; b) upstream surface of the
wing; c) downstream surface of the wing. Isolated wing: 1) experiment; 3) cal-
culation. Wing in the presence of an airframe: 2) experiment; 4, 5) calculation
at xw = 4Dm and 6.8Dm respectively.
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and c: x = 32b0 (1∗), 0.47b0 (2∗), 0.62b0 (3∗), 0.76b0 (4∗), and 0.92b0 (5∗). Here, z
_
 = z ⁄ zmax is a relative spanwise

coordinate; the coordinates of the cross sections were selected in accordance with experimental data.
The character of flow around an isolated triangular wing is determined by the velocity of the incident flow,

the angle of attack, and the thickness of the wing; various flow regimes can be realized depending on the indicated
parameters especially on the downstream side of the body considered [9]. For the flow regime investigated, Mn =
M∞ √1 − (sin χ cos α)2  > 1, i.e., the flow around the leading edge is supersonic, and, as calculations show, the leading
shock wave attaches to the edge with the formation of an internal compression shock on the downstream side of the
body [7]. In the case represented in Fig. 2a, the leading shock wave in cross sections 1∗–5∗ bounds the disturbed re-
gion. The calculated distributions of the Mach number on the downstream side of the wing surface and in the dis-
turbed flow, shown in Fig. 2a, point to the formation of an internal compression shock. Figure 2b and c shows the
spanwise distributions of the pressure coefficients Cp(z

_
) in different cross sections. On the whole, the change in the

distribution of Cp(ϕ) on both the upstream (Fig. 2b) and downstream (Fig. 2c) sides of the wing, arising when passing
from section to section to the line of maximum thickness of the wing, corresponds to a canonical flow.

The distribution of Cp(z
_
) in cross sections 1∗ and 2∗ (x < 0.5b0) at the upstream surface is a monotonically in-

creasing function, i.e., the pressure increases from the root chord (z
_
 = 0) to the leading edge of the wing (z

_
 = 1). The

flow in the cross sections x < 0.5b0 positioned on the line of maximum thickness of the wing expands in the longitu-
dinal and transverse directions, with the result that the pressure decreases sharply. The pattern of the spanwise pressure
distributions in cross sections 3∗ and 4∗ is substantially deformed because of the profiling of the wing. This feature
follows from both the calculation and experimental data presented in Fig. 2b; it is seen that these data are in good
agreement. The observed difference between the indicated data obtained for the near-edge region is local in character
and is explained by the strong irregularity of the finite-difference grid under the conditions of attachment of the bow
shock to the leading edge. The conical bulge on the wing, necessary for attachment of a holder in experiments, dis-
turbs the pattern of pressure distribution over the wing surface. This explains the existence, at z

_
 ≤ 0.3, of an increased-

pressure region in cross section 4∗ in the indicated experiments.
In the cross sections on the downstream side of the wing there arises a flow directed from the leading edge

z
_
 = 1 to the symmetry plane of the wing z

_
 = 0. A stagnation of the flow in the neighborhood of the symmetry plane

of the wing leads to the appearance of a positive pressure gradient ∂Cp(z
_
)/∂z

_
 > 0 that, at a supersonic velocity of the

transverse flow in the neighborhood of the leading edge, gives rise to the formation of an internal longitudinal com-
pression shock, which is seen from Fig. 2a. The existence of an internal shock in a flow is evidenced by the increased
density of the isolines in cross sections 1∗–5∗, and a track of this shock on the surface has the form of a straight line
with origin at the top of the wing.

Comparison of calculation and experimental data obtained for the downstream side of the wing has shown
that the calculated distributions of Cp(z

_
) in cross sections 1∗ and 2∗ (Fig. 2c) agree fairly well with the corresponding

data of a physical experiment. However, the decreased experimental value of the gradient ∂Cp(z
_
)/∂z

_
 and the difference

between the calculated and experimental values of Cp in the neighborhood of the root chord are explained by the in-
fluence of the boundary layer, which was not taken into account in the calculations. This effect manifested itself most
pronouncedly in cross sections 3∗ and 4∗ (Fig. 2c).

Flow around an Object Composed of a Triangular Wing and an Ogival-Cylindrical Airframe. An "air-
frame + wing" object is obtained by combination of the above-described elements. The position of the wing on the
airframe is determined by the coordinate of the bort-chord xw = x ⁄ Dm that is measured from the point nose of the
airframe. At xw = 4Dm, the origin of the bort chord coincides with the coordinate of conjugation of the ogival part of
the airframe with the cylinder (Fig. 3a, object 1), and xw = 6.8Dm corresponds to the coincidence of the trailing edge
of the wing with the bottom section of the cylindrical part of the frame (Fig. 3b, object 2). The calculations were car-
ried out with separation of the leading shock wave. Figure 3 shows the geometry of the objects considered, the con-
figuration of the leading shock wave, and the results of calculations of the distributed loads on the surface of the
bodies in the form of pressure-coefficient isolines. In the case of an incident flow with definite parameters, the whole
wing is in a disturbed region bounded by the leading shock wave generated by the airframe, and the flow around the
wing, arising in the neighborhood of the airframe, is nonuniform.

The spanwise distributions of the pressure coefficients in the cross sections of the wing in the presence of
the airframe are presented in Fig. 2. The cross sections selected correspond to the cross sections of an isolated wing.
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The results presented show that there is a qualitative analogy between the Cp(z
_
) distributions of the isolated wing

and the wing in objects 1 and 2 with an airframe. However, in the wing cross section 1∗ on the upstream side of
object 1 (Fig. 2b), the value of Cp(z

_
) is increased, which can be explained by the nonuniformity of the flow induced

by the head part of the body. The rarefaction arising in the neighborhood of the bourd chord on the downstream

Fig. 3. Scheme of a flow around object 1 at xw = 4Dm (a) and object 2 at
xw = 6.8Dm (b).

Fig. 4. Distribution of the pressure coefficient in the cross sections of the air-
frame of object 1 (xw = 4Dm): a) isolated airframe; b) downstream side; c) up-
stream side.
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side of the wing, forming a system with the airframe, is stronger than that of the isolated wing. This feature for
cross sections 1∗ and 2∗ is shown in Fig. 2c. The distributions of Cp(z

_
) over the wing panel, in the region located

closer to the leading edge, are practically coincident. The calculation data (see Fig. 2) show that the point of conju-
gation of the wing with the airframe does not influence the distributed loads on the wing, which is in agreement
with experimental data [9].

The local loads Cp(ϕ) in the cross section x ⁄ Dm = const of the isolated airframe and of the airframes of ob-
jects 1 and 2 are presented in Figs. 4 and 5. Here, the cross sections selected correspond to the cross sections of the
isolated wing. An impression of the main changes arising in a flow around the airframe in the presence of the wing
can be gained from the comparison of the distribution of Cp(ϕ) over the surface of the isolated airframe with the
analogous distribution over the airframe with the wing.

Such a comparison is presented in Figs. 4 and 5, where the distributions of Cp(ϕ) are given for the isolated
airframe and for the downstream and upstream sides of the airframe with the wing. It should be noted that there is a
good qualitative agreement and a small quantitative disagreement between the distributions of Cp(ϕ) in the cross sec-
tions of objects 1 and 2.

The presence of the wing on the downstream side of the airframe causes a significant increase in the rarefac-
tion on the airframe; however, the distribution of Cp(ϕ) over this airframe agrees qualitatively with that of the isolated
airframe. Here, the effect of the wing manifests itself as a displacement of the region of large pressure gradients
∂Cp(ϕ)/∂ϕ to the bourd chord of the wing. The calculation data (Figs. 4 and 5) obtained for the neighborhood of con-
jugation of the wing with the airframe on its upstream side differed most substantially. Unlike the isolated airframe, in
all the cross sections x = const positioned on the conjugation line there arises a jump-like increase in the pressure due

Fig. 5. Distribution of the pressure coefficient in the cross sections of the air-
frame of object 2 (xw = 6.8Dm): a) isolated airframe; b) downstream side; c)
upstream side.
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to the shock wave induced by the wing panel. In this case, a local pressure maximum arises in the Cp(ϕ) distribution
as a result of the interaction of the shock wave induced by the wing with the airframe. In cross section 1∗ (Figs. 4
and 5), this maximum arises at the point of conjugation of the wing with the airframe.

The intensity of the Cp maximum decreases downstream, and this maximum shifts to the generatrix ϕ =
180o. The profile of the curve Cp(ϕ) equalizes gradually from cross section to cross section, and the region of com-
pression of the flow on the upstream side of the airframe widens. At the same time, the pressure at the airframe
generatrix ϕ = 180o monotonically increases in the direction of the trailing edge, as compared with that of the iso-
lated airframe. This marked difference between the indicated pressures in cross sections 3∗ and 4∗ is seen from Figs.
4 and 5.

We will now consider the following feature of a flow around object 1. The existence of a distorted leading
shock wave as well as pointed edges and fractures on the surface of the airframe around which a stream flows is fa-
vorable for the formation of large-scale vortex structures. The form of these structures is mainly determined by the in-
ertial forces. As was shown in [10], in this case it is not necessary that a viscous-medium model be used for
simulation of the process of vortex formation.

The spatial pattern of a flow in the neighborhood of object 1 is shown in Fig. 6. Here, for illustration, the
flow pattern is represented by a set of streamlines that are combined in "bands." The longitudinal twisting of bands
points to the vortex formation in the distributed region. On the basis of calculation data, we separated and showed, in
these figures, "bands" of streamlines originating on the upstream side of the leading shock wave and passing over the
lower and upper surfaces of the wing. It should be noted that large-scale vortex structures are formed and develop in
an eddying flow formed downstream of the distorted leading shock wave.

On the upstream side of the object (Fig. 6a), the streamlines smoothly pass over the lower surface and then
leave the trailing edge. Large-scale vortices are formed when streamlines pass to the downstream side of the airframe
and to the upper surface of the wing (Fig. 6). At the same time, vortex structures are intensively developed in the
neighborhood of the line of conjugation of the wing with the airframe on its downstream side. It is seen from Fig. 6b
that, in the indicated region, the "bands" of streamlines twist most intensively in the longitudinal direction.

The general dynamics of streamlines on the downstream side of the object and the tendency for the formation
of a vortex sheet in the process of their propagation down from the trailing edge of the wing are shown in Fig. 6b.
The data presented do not separate a vortex street downstream of the trailing edge of the wing.

Thus, based on the Euler equations, we have solved the problem on a supersonic flow around two configura-
tions of a complex object consisting of an axisymmetric airframe and a triangular wing.

For construction of a high-level complex configuration, we proposed an algorithm of joining of its compo-
nents. The compactness of the initial data necessary for construction of a complex geometric model allows one to rap-
idly change the aerodynamic geometry at the stage of preliminarily parametric investigations of the flow conditions.

Results of numerical calculation, at M∞ = 4.03 and α = 10.1o, of a flow around an isolated ogival-cylindrical
airframe, a wing, and an object composed of the airframe and wing in two variants are presented. Comparison of the
data obtained for the isolated wing and air frame with analogous data obtained for the object composed of them has
shown that the components of this object influence each other and determine the character of a flow around them and
the distribution of loads over their surface. It is shown that the shift of the wing along the generatrix of the cylindrical

Fig. 6. Lines of flow in the neighborhood of object 1.
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part of the airframe weakly influences the distribution of loads over the airframe and the wing. The calculation results
were compared with the results of a physical experiment.

The author expresses his heartfelt gratitude to I. I. Mazhul’, G. A. Tarnavskii, and A. A. Zheltovodov for use-
full discussion and constant attention to the work.

NOTATION

b0, length of the root chord of a wing, m; Cw = ymax/Lz, relative thickness of a profile; Cup = yup/Lz, rela-
tive thickness of the upper part of the profile; Clow = ylow/Lz, relative thickness of the lower part of the profile; Cp
= (P − P∞)/q∞, dimensionless pressure coefficient; Dm, diameter of the midsection of an airframe, m; E, total energy;
e, specific internal energy; f, conservative parameters; F(g), vector of stream functions; g, gasdynamic parameters; i1,
i2, i3, unit vectors of the Cartesian coordinate system; Lz = xi − xk, length of the local chord at z = const, m; M∞,
Mach number of the incident flow; Mn, normal component of the Mach number at the leading edge of the wing; n,
vector of the normal to the surface; P, static pressure, N/m2; P∞, static pressure of the incident flow, N/m2; q∞ =
ρ∞W∞

 2/2, kinetic head, N/m2; dS, vector of the area element of the surface of a cell; S, surface of a separated vol-
ume Ω; t, time; vx, vy, vz, velocity-vector components w; W∞, velocity of the incident flow; xi, coordinate of the
trailing edge of the wing; xk = z/tan θ, coordinate of the leading edge of the wing; xw = x ⁄ Dm, coordinate of the
origin of the bourd chord of the wing on the airframe; yup, ylow, absolute values of the maximum thickness of the
upper and lower profiles of the wing; zmax, local half-span of the wing in the cross section x = const; α, angle of
attack; γ, adiabatic index; θ = π ⁄ 2 − χ; λh = Lh

 ⁄ Dm, elongation of the head part of the airframe; λc = Lc
 ⁄ Dm, elon-

gation of the cylindrical part of the airframe; µ = b/a, ratio between the semiaxes of the hyperbolic function; ρ,
density; χ, sweep angle; Ω, volume of a cell; dΩ, element of the cell volume. Subscripts: up, upper surface of the
wing; h, head part of the body; low, lower surface; c, cylindrical part of the body; m, midsection; max, maximum;
n, normal component; ∞, parameters of the incident flow; w, wing.
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